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SOME THOUGHTS AT THE BEGINNING

* Rock masses are by definition assemblies of rock blocks
separated by joint sets and less frequent faults.

* They are not continua. Yet so often they are modelled as
If they were without joints, without anisotropy.

* Of course this Is easier. But iIs it of value?

* Perhaps it can even mislead us — and you the mine
owners.
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FROM THE
WORLD OF CIVIL
ENGINEERING.
TUNNELS CAN
BE TOO CLOSE IF
POOR ROCK
CONDITIONS
AND/OR HIGH
STRESS.

AN EMPIRICAL
FINDING!



ONCE DECIDING THAT BLOCK MODELLING MAY BE IMPORTANT — WHAT
ABOUT BASIC INPUT DATA? (Cundall et al. 1977)




SOME EARLY LESSONS FROM PHYSICAL MODELS

(Barton and Hansteen, 1979)
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The deformation magnitudes and directions depend on the joint
orientations and on the horizontal stress.

o T T e ST

"B . B8

/
/
/

f 1
]

.
/
' = T /
‘ A -t |- d § My /
-l _‘__ _-‘_ /i f‘ e \&/ / /
it |t 0 $s b IR | A
74 t\‘ NN

¢ f7 B N1 Mxxoxxxte
WA
b 4 N ,\/ AA 'A'.
:: 0‘2 :‘0 ‘o: :: ANAAAA
a >

:; ;:
-
.

-

f" i >l S
. » . 32 ——gee . - ;( \. .
% o :‘L. .-.,- LT.\. w3 "
-~ 1 |
L " -~ ~ B / » :.: :., - !
Qo 1 ] ~ -
.L_"J . '/2 9, '—‘ 2 - X ‘ﬂ[>t°.l e Y -
SKALA el e e\ SKALA DA
on R SXALA sz yn 3 e e
S :: _ —- —- ¥ e » /
IRE o o amoamr o o N S S e — - — el - - » { - HF"J
Ll ) - - B




Qs

242

~



BEFORE UDEC
(1980)

(but after an
‘earthquake’)
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UDEC is 2D

sometimes
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displacement vectors
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displacement vectors
maximum = §,391E-03
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EARLY SCOPING
STUDIES TO SEE THE
POSITIVE EFFECT OF
HORIZONTAL STRESS
WHEN SPANS ARE
SO LARGE (62m)
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Over-break
Investigation in
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Pseudo-continuum Discontinuum Continuum
using continuum [:> approach approach
approach
/
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Q=100
|
FEM/FLAC ! UDEC/3DEC FEM/BEM

» Heavily jointed weak rock = continuum (FEM)
Jointed/faulted rock = discontinuum (UDEC/3DEC) ...see examples

Massive rock that may fracture = FRACOD...see examples
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IF

HE DECISION IS A DISCONTINUUM MODEL

WE WILL NEED A WAY TO DESCRIBE
THE PROPERTIES OF THE ROCK JOINTS
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IF THE DECISION IS A CONTINUUM MODEL

WE WILL NEED A WAY
TO DESCRIBE THE YIELD FUNCTION



Failure

/‘“ = 1.3a

\}- 1.75m

- £
Elastic-Brittle

£

Elastic-Plastic

HERE WE
START TO SEE
THE
PROBLEMS
WITH
CONTINUUM
MODELLING
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.........................

04 06 08 1
Normalized Damage

A GREATLY IMPROVED RESULT USING A CWFH (COHESION WEAKENING

FRICTION HARDENING) APPROACH. HAJIABDOLMAJID, MARTIN AND
KAISER, 2000.

PANDEY and BARTON, 2011 USED THIS CWFH APPROACH USING Q-BASED
INPUT DATA CC AND FC (COHESION COMPONENT, FRICTION COMPONENT <



Left: FLAC-3D with CSFH. (Pandey and Barton, 2011). Right: FRACOD
(Shen, 2008). The latter allows potential fracturing to be modelled.

View Title: Shear Stresses - C then Tan Phi W —>

pm Ltd
2004 10:34:30

Shear Band development at
the stope back.

h

CW-0 (E)




Rock slopes — and
details that will
never be capture
In continuum
modelling
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A valley
of rock
slopes:
Indian
Kashmir,

Northern
Rail.




Are we supposed to
‘homogenize’ to a
model material?

WHERE is ONE-JOINT-SET,
JOINT-SETS in GSI (or RMR)?




(a) (b) (c) (d)
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S fundamentals (if
modelling with
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by steeply dipping joints.
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Hoek and
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The reality is more interesting than continuum
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International Society for Rock Mechanics and Rock Engineering ISRM International Sympostum
Nonwegian Group for Rock Mechanics Eurock 2020 — Hard Rock Engineering
Trondbeim, Norway, 14-19 June

Slope angle versus slope height — the basis of an empirical
tool for slope design within fractured rock masses using
ITUCM

1.D. Styles

Mining One Consultants / Cavroc, Derbyshire, United Kingdom
tstyles(@miningone.com.au

A. Vakili

Mining One Consultants / Cavroc, Melbourne, Australia
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Contour Of Velocity
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13
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13

FLAC-3D slice of a 200m high open-pit
slope, with IUCM constitutive model. Has
anyone ever seen a huge ‘spoon-shaped’
failure like this in competent jointed rock?
UCS 20MPa — OK? But joint effects missed
by continuum modelling.

Parameter Rock Mass B
Density p (t/m?) 2.7
Intact Young’s Modulus Ei (GPa) 28.2
Geological Strength Index GSI 40
Hoek Brown Constant mj 10
Intact uniaxial compressive strength ~ UCS (MPa) 20

The recently developed ‘Improved Unified
Constitutive Model’ (IUCM). ‘This takes the best
parts of Mohr-Coulomb and Hoek-Brown’. But
something is not correct here.
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SURFACE CONDITIONS
Slickensided, highly weathered surfaces with soft day
ma”

VERY POOR

GEOLOGICAL STRENGTH INDEX FOR
JOINTED ROCKS (Hoek and Marinos, 2000)

From the lithology, structure and surface
conditions of the discontinuities, estimate
the average value of GSI. Do not try to
be too precise. Quoting a range from 33
to 37 is more realistic than stating that
G5l = 35, Mote that the table does not
apply to structurally controlled failures.
Where weak planar structural planes are
present in an unfavourable orientation
with respect to the excavation face, these
will dominate the rock mass behaviour.
The shear strength of surfaces in rocks
that are prone to deterioration as a result
of changes in moisture content will be
reduced is water is present. When
working with rocks in the fair to very poor
categories, a shift to the right may be
made for wet conditions. Water pressure
is dealt with by effective stress analysis.

SURFACE CONDITIONS

STRUCTURE

gh, slightly weathered, iron stained surfaces

Slickensided, highly weathered surfaces with compact

coatings or fillings or angular fragments
Slickensided, highly weathered surfaces with soft clay

Smooth, moderately weathered and altered surfaces
coatings or fillings

VERY POOR

PCOR

% Very rough, fresh unweathered surfaces
FAIR

p

2 VERY GOOD
73]

Z GO0OD
@ Rou

@0

=

T

y

o]
m

/ INTACT OR MASSIVE - intact
rock specimens or massive in
/ situ rock with few widely spaced

discontinuities

BLOCKY - well interlocked un-
disturbed rock mass consisting
of cubical blocks formed by three
intersecting discontinuity sets

v WERY BLOCKY- interlocked,
| partially disturbed mass with
| multi-faceted angular blocks

4 formed by 4 or more joint sets

N

INNR\e

o

= \
e

A

R

=]
=1

N
~N

g

o~

NN
NN

7] BLOCKY/DISTURBED/SEAMY
rd - folded with angular blocks
formed by many intersecting
discontinuity sets. Persistence
of badding planes or schistosity

N
N

<= DECREASING INTERLOCKING OF ROCK PIECES

DISINTEGRATED - poorly inter-
locked, heavily broken rock mass
with mixture of angular and
rounded rock pieces

«<3—= DECREASING INTERLOCKING OF ROCK PIECES

NN

= LAMINATED/SHEARED - Lack
= of blockiness due to close spacing
e 'I of weak schistosity or shear planes

In the opinion of the
lecturer it is rather
remarkable that so
many young (and not
S0 young) people
have adopted the
Rocscience-
promoted and of
course Hoek-
promoted GSI, with
the associated Hoek-
Brown equations (see
following screens).

It starts to look as if
‘geology’ is involved.
Then all goes into a
continuum blender —
and ‘geology’ is lost.
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ol BLOCKY
& DISTURBED
5] SEAMY

GEOLOGICAL SURFACE CONDITION
STRENGTH INDEX | very | coop | FAR | POOR | VERY
GOOD POOR
STRUCTURE DECREASING SURFACE QUALITY &==>
| INTACT 'é)
MASSIVE L / N/A | N/A
o LL80 | /1
".-‘,-1‘3 g / '
B .‘LF;‘_. a
2254 BLOCKY X
.;2‘:-7.;1 S
&5 .
R g /
A !
X7 VERYBLOCKY & 50
S /n
=
E |
@)
=
o
m
&
A

RN DISINTEGRATED

L

/71 LAMINATED
7| SHEARED

The GSI chart stripped of its
author’s instructions. The hopeless
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Some
creative
additions for
‘better’
quantifying
GSI.

Forty-Year Review of the
Hoek-Brown Failure
Criterion for Jointed Rock
Masses.

Renani and Cai, 2021
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GSI1 = RMR —5 = R1+R2+R3+R4+R5(=15) -5 (1)
GSI2 = 1.5 R4 + 0.5 RQD 2) A selection of some
ROD T equations used to improve
GSl, = 15 log( ? Jr]+50 (3) the quantification of GSI.
n d
G5l - LH[RQD Jr)+44 w Why a published method
In Ja should require so much
Improvement is not clear.
GSI, - (15 2“;“;]; )+0,5RQD (5)
+ V4 V4 Vd .
o Van & Vasarhelyi, 2014.
26,5 +8,79InJc +0,91nVb
GSI, = (6)
1+0,0151InJc—0,0253InVb
GSl; = 133 - 102 T (7)
H ») }
0,19
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* YOUR LECTURER REJECTS CONTINUUM MODELLING!

* THE GSI HOEK-BROWN RS2 (FEM) METHOD IS USUALLY
GIVING FALSE (CONTINUUM) RESULTS.

* ROCK MASSES ARE MORE INTERESTING (and more complex)
THAN THIS!

* REAL BEHAVIOUR WILL CONSTANTLY BE A SURPRISE IN
RELATION TO CONTINUUM PREDICTIONS.
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WHAT IS HELPING TO PREVENT SUDDEN COLLAPSE?

Progressive failure of components:  *CcSs: crack, crunch, scrape, swoosh*

!

80 100 (o, +0,)2 160

Bingham Pit: No casualties. Monitored. Progressive failure....i.e. ‘T = ¢ then on tén ¢"



SLIDING ON A BASAL FAULT
PLANE WITH WEDGE EFFECT
SEEN TO THE LEFT. NO
‘SPOON-SHAPED’ FAILURE AS
WITH CONTINUUM ANALYSES.




CONCLUSIONS

. Continuum modelling concepts and results may be misleading many.

. Mohr-Coulomb and Hoek-Brown (based on GSI) are part of the problem.

. Real rock masses are usually jointed and sometimes faulted.

. The jointing (and faulting) can be in rock with UCS as low as 5MPa.

. Modelling rock masses as discontinua is of course more difficult.

. Joints have stress-dependent shear strength and exhibit dilation.

. UDEC-BB may be the most realistic method if 2D approximation is OK.

. 3DEC with a smaller number of key joint sets is complex but may be needed.
. An open-pit mine is not a cheap affair. Modelling cannot be cheap either.

10. Rock slopes with joints do not show spoon-shaped failure, like models.

11. An open pit will often fail (if it is possible) by combined fault and joint wedges.

O© 00 N O O b W N P
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